Yesterday April 14th we learned about linear equations and to create tables of values. Mr. Backe also told us about www.mathplayground.com and play some Math games.
He introduced Chapter 6 with some new words:
linear relation-A relation that appears as a straight line when graphed.
linear equation-An equation whose graph is a straight line.
interpolate-To estimate the value between two given values.
extrapolate-To find values that is not given
Tables of Values and linear equations
First thing to remember is that x is always the independent and y is the dependent.
Here's an example of a table of values in our class
To get the linear equation you have find the difference in each number in the y column. In this table it is 3, because it adds 3 in each row in the y column. And why -2, here's an example:
Practice Question from class
1. How many circles are in figure 7?
2.83 circles is what figure number?
Today April 15th we just corrected our tests and started to do work which is:
6.1
CYU # 2
Practise-# 4,6,7,9,10
Apply-All
Extend-# 15
6.1 Workbook
6.1 Extra Practice
Scribe Post for April 14-15, 2010
Scribe Post for April 8th, 2010
Division of Polynomials
Today in class Mr. Backe gave us these examples.
8x(squared)/4x=2x 8x(squared)+4x/4x=2x+1
14x(cubed)+7x(squared)=2x(squared)+x
36x(squared)-12x/-4x=-9x+3 28x(squared)+21x+14/7
=4x(squared)+3x+2
Homework for tonight is:
Textbook 7.3
- All S.Y.K
- C.Y.U #2
- Practice #8 and 9
- All of Apply
- All of Extend
- 7.3 Extra Practice and 7.3 Workbook
- Chapter 7 Reveiw
- Chapter 7 test (textbook) or Hand-out test
- Chapter 7 Self Check
- Polynomial Puzzle (To hand in with Stash-It)
There is a test on Tuesday April 13, 2010
The Next Scribe is.......................................................................................Nicole N
Scribe Post for April 5, 2010
Hi guys, it's Renz P. So here's the things we did today.
We just started 7.2 [WorkBook] it's :
Here are some examples Mr. Backe' gave us.
1.]
OR
2.]
3.]
and we got a HOMEWORK too, by the way.
- READ page 264-268
- DO ALL Show-You-Know
- Check Your Understanding *Number 2,3*
- Practice 4 or 5, 6 or 7, 8 or 9 and 12 , 13
- Apply : ALL
- Extend : 19 , 20
So that's all for today (: .
Sorry for the mistakes and @Mr.Backe' sorry for posting late.
:3
March 25, 2010 Scribe Post
Math class today was pretty simple. We just went over our test, got homework and went over some definition words for Chapter 7.
These are Today's notes:(with pictures)
Monomial ----> give three examples using variables for at least two.
3x, -4t, 7s,
Binomial ----> give three examples with a constant.
4x+19, 4x + 13x2, 3x - 2y
Polynomial ----> an algebraic expression with four or more terms.
Ex: -4x2 + 4x + 3y + 4
Distributive property:
a (x+y) = ax + ay
a (x-y) = ax - ay
-a (x+y) = -ax - ay
-a (x-y) = -ax - ay
(Sorry the picture button doesn't work i'll edit when it works)
The next scribe is Jonathan.
March 16, 2010. Scribe Post!
Hey guys, so today in math we had a test review so in this scribe im going to talk about what will be on the test.
First off lets name the parts in this number.
So 7 is the Numerical Co-Efficient
The X is the Varible
The 2 is the exponent
and the constant is -9, when your talking about constants you have to put the whole thing.
Alright now its time to learn aboot LIKE TERMS!!
Like terms are 2 or more numbers that go together. The reason they go together is because they have the same variable and the same degree. Lets try an example shall we?
Which Numbers are Like Terms?
7x + 5y + 9xy + 4y
The like terms are 5y and 4y because they have the same variable which is "Y" and the same degree which is 1.
Now lets do a question like one we'll probably get on the test.
(7x + 4y + 8) - (3 + 6x -8y)
The first step we have to do is remove the brackets, now you think it would be
7x + 4y +8 -3 +6x -8y but you would be wrong if you thought that the correct answer is:
7x + 4y + 8 -3 -6x +8y. That is the correct way to write it, the reason you write it like that is because the symbol seperating the brackets is a "-" symbol so you have to change each number to its Additive Inverse.
An additive inverse is the opposite of a number. For example the additive inverse of
-1 would be 1 heres some more examples:
-6xy +6xy
7x-7x
-9y + 9y
Those are all additive inverses
Thats really all I can do for a scribe right now because the "import picture button" decided to stop working so I'll update this scribe once the "import picture button" decides to work. Sorry for the inconvienence.
March 13, 2010 Scribe Post (:
Hewoo people of earth today I'm going to talk about what we did in math today.
- They must have the same VARIABLE and DEGREE.
- They can be grouped.
- They can be +,-,x,÷
The green Booklet